Influence of strain on space-charge distribution at ferroelectric thin-film free surfaces

نویسندگان

  • Lun Yang
  • Kaushik Dayal
چکیده

Ferroelectric perovskites are wide-bandgap semiconductors and therefore are often modeled as perfect dielectrics. However, space charges can play an important role in regions with large electric fields, such as at domain walls, free surfaces, near electrodes, etc. In this paper, we apply a mesoscale model to examine the space-charge distribution at free-surface closure domain patterns in a ferroelectric thin film. The model uses a conventional electromechanical phase-field approach for ferroelectric domain patterns in combination with drift–diffusion based equations to model space-charge distribution. We additionally apply a boundary element method to compute the stray electric fields outside the ferroelectric free surface. We probe the influence of mechanical strain, such as would be applied through a substrate, on the distribution of space charge. We find an indirect, but strong, coupling between mechanics and space-charge distribution. The physical mechanism of this coupling is as follows: the mechanical strain induces changes in the domain patterns and polarization distribution; this in turn changes the local electric fields sufficiently that space charges are redistributed on the free surface rather than moving towards the bottom electrode. We note two interesting features of this coupling: first, the coupling mechanism is operative only at free surfaces due to the complex domain patterns in these regions, and would not occur in the bulk; second, although domain patterns are visually only marginally changed by the presence of space charges, the changes in electric field due to these seemingly small changes is significant and this provides the coupling with space charge. 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thickness driven stabilization of saw-tooth–like domains upon phase transitions in ferroelectric thin films with depletion charges

Related Articles Correlation between growth dynamics and dielectric properties of epitaxial BaTiO3 films Appl. Phys. Lett. 100, 102904 (2012) Strong red emission in lead-free ferroelectric Pr3+-doped Na0.5Bi0.5TiO3 thin films without the need of charge compensation J. Appl. Phys. 110, 034102 (2011) Influence of thermal stresses on the electrocaloric properties of ferroelectric films Appl. Phys....

متن کامل

Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...

متن کامل

Mechanisms of imprint effect on ferroelectric thin films

We have developed a single/double layer model to explain horizontal shifting of measured D-E hysteresis loops imprint for ferroelectric thin films. Such phenomenon can be explained by considering three mechanisms or their multiple effects: 1 stress induced by film/electrode lattice mismatch or clamping, 2 domain pinning induced by, e.g., oxygen vacancies, or 3 degradation of ferroelectric prope...

متن کامل

Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films

At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, w...

متن کامل

Real Space Phase Field Simulations of Ferroelectric Materials

Ferroelectric perovskites are used in various transducer, memory and optical applications due to their attractive electromechanical and optical properties. In these applications, ferroelectrics often have complex geometries and function under complex electro-mechanical loadings. Phase-field models are typically used to predict the formation of microstructural patterns and subsequent evolution f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012